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Abstract
An old problem in Isothermal Titration Calorimetry is the accurate characterisation of the in-

strument, i.e. the determination of the instrumental transfer function. Normally, this calibration is
performed electrically or through well known chemical reactions, but the transfer function pa-
rameters obtained by both methods generally do not agree: the first method normally yields
smaller time constants than the second one. This fact is explained by the different path the heat
flux takes towards the thermal sink. However, the time constants must be independent of the ex-
periment type (electrical or chemical). In order to attain this independency, a realistic physical
model of the system is developed taking into account the different heat sources and the paths in
the system and using physically attainable (experimental and theoretical) inputs for testing the
model. Important results from the model study are that the instrument is represented by different
transfer functions, depending on the heat source location, and that the time constants are the same,
regardless of the heat source location. A very simple and fast method based on such non-pheno-
menological physical model for obtaining the transfer function of an Isothermal Titration Micro-
calorimeter is applied here.

Keywords: control system, isothermal titration microcalorimetry, system theory

Introduction

Thermokinetic studies using isothermal microcalorimetry require an exhaustive
dynamic characterisation of the calorimeter. The behaviour of a microcalorimeter is
described by its transfer function. Therefore, the dynamic characterisation consists
of a reliable determination of this function.

To date several methods have been proposed to solve this problem and they are
classified into two general categories: transient response analysis [1−3] and fre-
quency analysis [4−8].

These approaches present some problems: the impulse input is physically unat-
tainable; the choice of the mathematical model has a big influence on the results;
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working with a sampled signal in the frequency domain poses some data processing
problems; and the use of periodic signals is time consuming.

Therefore, a fast and precise method for obtaining the transfer function in the
time domain has been designed. The development of a realistic physical model of the
calorimeter is the key to the problem.

In all analysis procedures of real systems a mathematical representation of the
physical model is required to study their features. Such model provides in idealised
and simplified representation of the real system. The modelling of a system consists
of three steps:

1. Selection of the elements that are relevant to the system behaviour.
2. Simplification of these elements.
3. Deduction of the system transfer function, based on fundamental physical laws

applied to each element.

In practice, an exact mathematical representation of a complex system is impos-
sible. However, formulating correct hypothesis about some system properties, can
lead to an approximate but realistic model of the system. Comparison between the
real and theoretical behaviour shows how far is the model a realistic representation
of the real system.

In the model developed here the microcalorimetric unit of the isothermal titration
microcalorimeter is represented by a lumped parameter model with three elements:
sample, cell-temperature sensor ensemble and heat sink (Fig. 1). Each element has
well defined thermal properties such as its heat capacity and heat transfer coefficient
which are considered to be time invariant. These three elements have mutual interaction
which is reflected in the differential equation set representing the individual energetic
balances. These equations will be solved using the Laplace Transform method:

Fig. 1 Lumped-parameter model of the microcalorimetric unit with three elements: sample,
cell-sensor and heat sink. αS, αSC: heat transfer coefficient between sample and cell-
sensor set and cell-sensor set and heat sink. WS, WE, WK: thermal power produced in
the sample, by the electrical calibrator and by the feedback transducer. TS, TSC, T0:
sample, cell-sensor set and heat sink temperature
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F(s) = L[f(t)] = ∫ 
0

+∞

e−stf(t)dt ↔ f(t) = L−1[F(s)] (1)

where L is the Transform Laplace operator and s is the complex variable in the
Laplace’s transformed domain.

A very important aspect determining the behaviour of the instrument is the exist-
ence of different heat sources and, therefore, different heat flux paths in the micro-
calorimeter [9, 10]. The thermal effect source can be located in the sample itself
(chemical reaction, viscous effect, ...), in the electrical heater on the cell-sensor set
(electrical calibration) or in the compensator of the feedback control. We use the
terms WS(t), WE(t) and WK(t) to indicate the heat flux from the corresponding source
locations. An incorrect identification of the source would lead, as will be seen later,
to a bad assignation of the poles and zeros (time constants) of the transfer function
and, consequently, a wrong representation of the system.

Experimental

At present there are various types of isothermal titration microcalorimeters
(ITM) available [11−13], but few have a high enough sensitivity for protein adsorp-
tion studies and, moreover, are very expensive. For that reason an ITM with digital
control, based on the twin principle [14], has been designed and built in our labora-
tory for such studies.

Fig. 2 Block diagram of the microcalorimetric system displaying the heat transfer processes
and the signal generation. S, R: sample and reference SC, RC: sample and reference
cell-sensor set. Amp, FBC, K: amplifier, feedback controller, feedback transducer
(compensation thermopiles) and heat sink. WSC, WRC, WK: thermal power transferred
from the cell-sensor set to the heat sink in the sample and reference cells and thermal
power generated by the feedback transducer on each cells. ∆VSC, ∆VRC, ∆V: voltage
signals generated by the sensors in both cells and their difference. ∆VOUT, ∆VC: meas-
ured and feedback (compensated) voltage signal
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Both gold cells, sample and reference, are filled with 5 ml of pure water for the
calibration operations below described. In each cell a set of 66-junctions semicon-
ductor (Bi2Te3) thermopiles is used as heat flux sensors (Seebeck effect). They are
arranged electrically in serie and thermally in parallel, inserted between the outer
cell wall and the thermal sink. The voltage difference between the flux sensor of the
sample and reference cell is amplified (gain ca. 100000, in two stages)
(INA 103 Burr-Brown) and then digitalized by means of a 16-bits A/D converter
(DT2805/5716A Data Translation).

In our case there is a compensation control system which modifies the transfer
function of the instrument [15, 16]. Compensation is achieved through a digital con-
trol system located in the feedback trajectory consisting of a computer and a 12-bits
D/A converted (DT2805/5176A). The feedback signal is fed into an independent set
of thermopiles in each cell. They generate a heat flux (Peltier effect) which attempts
to restore thermal equilibrium (baseline). Feedback is produced in a bilateral way
(Fig. 2). This presents some advantages with regard to the unilateral control, al-
though both are formally identical. Bilateral feedback yields greater symmetry to the
system leading to lesser thermal imbalance between sample and reference cell; as
well as minimisation the unilateral Joule heat production by the feedback actuators
and equality of the calibration constants for both exothermic and endothermic effect.
The heat transfer processes and the signals generation that take place in the micro-
calorimeter are shown in the block diagram, Fig. 2.

Electrical calibrations were carried out passing a well defined electrical current
through a resistor (161.94 Ω) made of ‘molecular wire’ wound around the sample
cell wall. A Keithley 220 Programmable Current Source was used for this purpose.

Microcalorimeter model

Microcalorimeter transfer function for an open-loop control

Considering only the sample cell (SC), let us assume that there is a single thermal
effect coming from the sample, W(t)=WS(t). The power balance leads to the differen-
tial equation set:

CS 
dTS(t)

dt
 = W(t) − αS(TS(t) − TSC(t))

CSC 
dTSC(t)

dt
 = αS(TS(t) − TSC(t)) − αSC(TSC(t) − T0) (2)

where TS(t), TSC(t) and T0 are the temperatures of the sample, cell-sensor set and heat
sink; αS and αSC are the heat transfer coefficients between sample and cell-sensor set
and between the cell-sensor set and the heat-sink; and CS and CSC are the heat ca-
pacities of the sample and the cell-sensor set. No equation for the power balance of
the heat sink has been taken into account, since its heat capacity is so large that its
temperature does not vary appreciably when involved in heat exchange processes.

The thermal relaxation times of the isolated elements, sample and cell-sensor set,
are given by:
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τS = 
CS

αS
              τSC = 

CSC

αSC
(3)

In these definitions no interaction between the elements has been considered.
Making the following transformation:

∆TS(t) = TS(t) − T0

∆TSC(t) = TSC(t) − T0 (4)

the solution of the problem in the Laplace’s transformed domain, with null initial
conditions, is:

∆TS(s) = 

1

αS




1 + 

αS

αSC

 + 
CSC

αSC

 s




1 + 




CSC

αSC
 + 

CS

αS

 + 
CS

αSC




s + 

CSCSC

αSαSC

 s2

 W(s)

∆TSC(s) = 

1

αSC

1 + 




CSC

αSC

 + 
CS

αS

 + 
CS

αSC




 s + 

CSCSC

αSαSC

 s2
 W(s) = g2P(s)W(s) (5)

where ∆TSC(s) is the output signal of the two-element subsystem and, consequently,
g2P(s) the transfer function.

Let us assume now that the thermal effect is produced directly on the cell-sensor
set through an electrical calibration, W(t)=WE(t). The differential equation set corre-
sponding to the thermal power balance, similar to the previous one (Eq. (2)), has the
solution:

∆TS(s) = 

1

αSC

1 + 




CSC

αSC

 + 
CS

αS

 + 
CS

αSC




s + 

CSCSC

αSαSC

 s2

 W(s)

∆TSC(s) = 

1

αSC




1 + 

CS

αS

 s



1 + 




CSC

αSC

 + 
CS

αS

 + 
CS

αSC




 s + 

CSCSC

αSαSC

 s2

 W(s) = g2P,  0(s)W(s) (6)

It is observed that the new transfer function g2P,0(s) has two poles and one zero,
whereas in the first case g2P(s) has only two poles and without zeros. This simple dif-
ference yields important consequences that will be shown later. A very significant
fact is that the two poles are identical in the two different situations, since the char-
acteristic equation (transfer function denominator) is the same.
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Because sample and cell-sensor set are two interacting elements, the time con-
stants of the system are not the same as the time constants of the each isolated ele-
ment (Eq. (3)). They are given by:

τ1 = 
1
p1

                    τ2 = 
1
p2

(7)

where p1 and p2 are the poles, real and dissimilar, of the transfer function, i.e. the
roots of the characteristic equation:

s2 + 




αSC

CSC
 + 

αS

CSC
 + 

αS

CS




 s + 

αSαSC

CSCSC
 = (s + p1)(s + p2) = 0 (8)

and the following relationship is fulfilled:

τ1 > τS, τSC > τ2 > 0 (9)

The measured signal is a voltage (Fig. 2) because the flux sensors, semiconduc-
tor  thermopiles, transform the temperature difference ∆TSC(s) into a voltage ∆VSC(s)
(Seebeck effect):

∆VSC(s) = εSC∆TSC(s) (10)

where εSC is the Seebeck coefficient of the sensor. In this way, the voltage produced
by the sensors is:

∆VSC(s) = εSCg(s)W(s) (11)

where W(s) represents WS(s) or WE(s), and g(s) correspond to g2P(s) or g2P,0(s), ac-
cording to the circumstances.

Since the microcalorimeter design is based on the twin principle, the treatment
for the reference cell (RC) is completely analogous to the previous one and the ther-
mal parameters are similar. If the thermopile sets of each cell are connected in oppo-
sition, the contributions to the total voltage generated by the sensors, ∆VSC(s) and
∆VRC(s), due to accidental effects are cancelled:

∆V(s) = ∆VSC(s) − ∆VRC(s) = ε(TSC(s) − TRC(s)) (12)

where it has been assumed that: εSC=εRC=ε.
This voltage ∆V(s) is multiplied by an amplifier gain factor, A, obtaining the final

output signal ∆VOUT(s):

∆VOUT(s) = A∆V(s) = Aε(TSC(s) − TRC(s)) (13)

and for the two possible heat sources considered earlier:

∆VOUT(s) = Aεg(s)W(s) = G(s)W(s) (14)
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where the factor G(s) that multiplies to W(s) represents the corresponding open-loop
transfer function of the system, G2P(s) and G2P,0(s), in each case.

It is observed that time fluctuations of the heat sink temperature, T0, do not affect
the signal, since its effect is cancelled out: the measurement only depends on the
temperature difference between both cells, caused mainly by the chemical reaction
or the electrical calibration.

Microcalorimeter transfer function for a closed-loop control

In this configuration the microcalorimetric system is controlled through a com-
pensation system with an active digital proportional control located in the feedback
trajectory [11, 17, 18]. The compensation thermal power, WK(s), generated by the
feedback transducer (compensation thermopiles), is given by:

WK(s) = 
π
R

 ∆VC(s) + 
1
R

 ∆VC
 2(s) (15)

where ∆VC(s) is the compensation voltage (feedback signal) and π and R are the
Peltier coefficient and the electrical resistance of the transducer. The first term in the
right hand side of this equation is the Peltier power and the second one is the Joule
power. Taking 120 mV for the single junction Peltier coefficient [19], it can be estab-
lished that the Joule power is negligible. It is always far less than 0.005 per cent of
the total heat power generated, since ∆VC(t) never exceeds 0.5 mV. Moreover, the
compensation is made bilaterally and so the Joule effect is produced simultaneously
in both cells and approximately cancelled. Therefore, if the compensator device con-
sists of a pure proportional controller, the expression adopted for the compensation
thermal power is:

WK(s) = 
π
R

 ∆VC(s) = 
π
R

 Kp∆VOUT(s) = GFB(s)∆VOUT(s) (16)

where KP is the proportionality constant of the feedback control. The factor multi-
plying to ∆VOUT(s) is the feedback transfer function, GFB(s).

Taking into account that the compensation signal actuates on the cell-sensor set,
it would be logical to consider for this thermal effect the transfer function with two
poles and one zero. On the other hand, the sign of the transducer action in the refer-
ence cell is the opposite to that of the corresponding to the sample cell, thus imple-
menting a symmetrical feedback system.

In order to obtain the closed-loop (global) system transfer function for a sample
generated thermal effect, GS(s), the compensation power must be included in the
global power balance:

∆VOUT(s) = G2P(s) W(s) − 2G2P,0(s)WK(s) (17)

Substituting WK by the Eq. (16) and reordering:
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∆VOUT(s) = 
G2P(s)

1 + 2G2P,0(s)GFB(s)
 W(s) = GS(s)W(s) (18)

Similarly, we obtain the global transfer function for an electrical calibration, GE(s):

∆VOUT(s) = 
G2P,0(s)

1 + 2G2P,0(s)GFB(s)
 W(s) = GE(s)W(s) (19)

As a final step, both expressions (Eqs (18) and (19)) can be rewritten as:

GS(s) = A 
ε

αSC

 
p1p2

(s + p1)(s + p2) + bKP(s + z1)
 = A 

ε
αSC

 
p1p2

(s + p−)(s + p+)

GE(s) = A 
ε

CSC
 

(s + z1)
(s + p1)(s + p2) + bKP(s + z1)

 = A 
ε

CSC
 

(s + z1)
(s + p−)(s + p+)

(20)

where p− and p+ are the poles of the system with feedback, b is a constant that con-
tains some intrinsic parameters of the microcalorimeter and zl is the real zero of the
transfer function, and they are given by:

b = 2A 
ε

CSC
 
π
R

                    z1 = 
αS

CS
(21)

Despite that the transfer functions GS(s) and GE(s) differ in the presence of the
zero z1, the characteristic equation of both functions is identical:

(s+p1)(s+p2)+bKP(s+z1)=(s+p–)(s+p+)=0 (22)

and the value of its roots, p− and p+ , depend on the feedback by means of the pa-
rameter KP:

p± = 
(p1 + p2 + bKP)± √(p1 + p2 + bKP)2 − 4(p1p2 + bKPz1)

2 (23)

The expression under the root of Eq. (23), i.e. the discriminant of the quadratic equa-
tion, ∆, can be rewritten as follows:

∆=(p1–p2+bKP)
2+4bKP(p2–z1)=(p1–p2–bKP)

2+4bKP(p1–z1) (24)

Regarding that p1<z1<p2 (Eq. (9)), it can be proved that the discriminant is positive
for any value of KP, positive, negative or null, and, therefore, the p± poles are real
ones for any KP value. The time constants of the microcalorimetric system under
close-loop feedback control are now:

τ± = 
1
p±

          τ∗ = 
1
z1

 = τS (25)
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Therefore, the time constant associated with the zero is equal to the thermal relaxa-
tion time of the sample considered as an isolated element, τS.

Applying the root locus analysis [15, 16] to the characteristic equation (Eq. (22))
one can predict the influence of KP on the behaviour of the microcalorimetric system
for any parameter value from zero to infinity. In Fig. 3 the root locus in the s plane
for KP≥0 is shown. The pole and zero locations are represented by the symbols X and
O, respectively. Bearing in mind the relationship p1<z1<p2 (Eq. (9)) again, it is easy
to see that:

p±∈R

0 < p1 ≤ p− < z1 < p2 ≤ p+ ⇒ τ1 ≥ τ− > τ∗ > τ2 ≥ τ+ > 0

Kp = 0 ⇒ 




p− = p1

p+ = p2
 ⇒ 





τ− = τ1

τ+ = τ2
(26)

Kp → +∞ ⇒ 




p− → z1

p+ → ∞
 ⇒ 





τ− → τ∗

τ+ → 0

The time constants, τ− and τ+, are decreasing functions of KP, the decrease being
due to the compensation. For a high enough value of KP the pole p+ is negligible and
only it is necessary consider the pole p−. In other words, the system would only have
one time constant nearly equal to τS. In this way, with a highly efficient feedback, it
would be possible to remove the thermal inertia of the cell-sensor element. More-
over, the system is always stable and does not become oscillatory for KP≥0, since the
poles are always real and negative.

If the existence of the zero z1 is not taken into account and the root locus analysis
is applied, it can be proved that the time constant τ− is decreasing, but τ+ is an in-
creasing function of KP. Also, for small KP values the poles are real and negative, but
from a particular KP value the poles become complex conjugated with negative real
part. This fact means that the system is still stable but with an oscillatory behaviour.
This demonstrates that a compensation signal acting on the cell-sensor set and not on
the sample directly is a recommended design strategy, instead of a design limitation.

If the Routh and Hurwitz stability criteria [15, 16] are applied, the following sta-
bility conditions appear:

Fig. 3 Root locus diagram for Eq. (22) in the s plane. Pole (p±) and zero (z1) location repre-
sented by (X) and (O). It must be remembered that: σ=Re(s) and ω=Im(s)
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KP > − 
p1 + p2

b
 = − 

1
b
 




αSC

CSC
 + 

αS

CSC
 + 

αS

CS





KP > − 
p1p2

bz1
 = − 

1
b

 
αSC

CSC

(27)

being the second inequality the determining condition, since it is more restrictive
than the first one. Again, it is observed that the system is stable for KP≥0. The same
instability limit (KP=−p1p2/bz1) would have been obtained from the complementary
root locus (KP≤0).

Finally, we write the global (closed-loop) transfer function depending on the time
constants and the steady state gain, G0:

GS = G0 
1

(1 + τ−s)(1 + τ+s)

GE = G0 
(1 + τ∗s)

(1 + τ−s)(1 + τ+s)

(28)

being:

G0 = A 
ε

αSC

 
1

1 + aKP

and a is the dimensionless constant of the microcalorimetric system:

a = 2A 
ε

αSC

 
π
R

 = b 
CSC

αSC
(29)

Experimental transfer function determination

Once the physical model of the real system is defined, the transfer function can
be determined from experimental observations. This is the so-called system identifi-
cation problem, a common task in System Theory: from a known input, x(t) or X(s),
and output, y(t) or Y(s), of the system one can obtain the transfer function, G(s) or
g(t). The function g(t) is called the unitary impulse response or the Green function.
For a linear system the following relationships hold:

y(t) = ∫g
0

t

(t − t ′)x(t ′)dt ′

Y(s)=G(s)X(s)
(30)

in the time domain and in the Laplace’s transformed domain, respectively.
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On the other hand, if we want to identify G(s) from Y(s) and X(s), these must be
well defined and exactly known. Because it is difficult to specify how exactly is the
mixing process when a chemical reaction is taking place in the calorimetric cell, the
associated thermal effect is not well known. It is only possible to have an accurately
defined input, X(s) or x(t), if an electrical calibration is done.

As it has been proved that the transfer function poles are the same under identical
experimental conditions irrespective of the thermal effect source (electrical calibra-
tion or chemical reaction), one can determine the transfer function parameters by
means of an electrical calibration. For this purpose an electrically produced thermal
effect corresponding to a finite width pulse has been used:

W(t) = W0(χ(t) − χ(t − ∆))

W(s) = W0 
1 − exp(− s∆)

s

(31)

where W0 is the constant Joule power developed during ∆ seconds and χ(t) is the uni-
tary step function (χ(t)=0 for t≤0 and χ(t)=1 for t>0). As the null width pulse (im-
pulse), although formally easier to use, does not correspond with any physical event,
only finite width pulses have been used as standard input function [2, 3].

The procedure is as follows [2]:

1. Analytical derivation of the microcalorimetric response to a finite width pulse:

∆VOUT(t) = L−1[G(s)W(s)],   when   W(s) = W0 
1 − exp(− s∆)

s
(32)

Once the multiplication in the Laplace’s transformed domain and the inverse
Laplace transformation are made, we obtain the explicit expression of Eq. (32):

where the parameters β and γ are given by:

β = 
τ−

τ− − τ+
     γ = 

τ+

τ− − τ+
,     when  W(t) = WS(t)

β = 
τ− − τ∗

τ− − τ+
     γ = 

τ+ − τ∗

τ− − τ+
,     when  W(t) = WE(t)

(34)

2. Experimental recording of such response.
3. Fitting of experimental data to Eq. (33) by means of non-linear regression, in

order to estimate the time constants, τ± and τ∗.
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Fitting is performed in the time domain to avoid the data processing problems that
arise when sampled signals are used in frequency domain (Laplace or Fourier) [20].

To complete the transfer function evaluation, the steady state gain, G0, must be
experimentally determined. This calibration can be accomplished electrically by:

1. Pulses of finite width ∆ and power W0. The areas under the registered peaks of
the signal ∆VOUT(t) (Eq. (33)) are proportional to the corresponding heats Q, being
G0 the proportionality constant:

Area = ∫∆
0

∞

VOUT(t)dt = G0W0∆ = G0Q
(35)

2. Step inputs of constant power W0. The steady state values of the registered sig-
nal ∆VOUT(t) (Eq. (33)) are proportional to the corresponding delivered power W0,
being G0 the proportionality constant:

∆VOUT(+∞) = limt→+∞[∆VOUT(t)] = G0W0 (36)

In this way, the instrumental calibration constant is defined as the inverse of the
steady state gain, G0:

KCAL = 
1

G0
 = 

1 + aKP

A 
ε

αSC

(37)

Results and discussion

First of all, the two transfer function types are compared to evaluate the quality
of the fit and the estimated values of the parameters (time constants). Figure 4 shows
two fits to electrical calibration data from the Eq. (33), using the transfer function
with only two poles (Panel A) and with two poles and one zero (Panel B). The time

Fig. 4 Experimental response to a finite width power pulse with ∆=10s, W0=167.5 µW and
KP=10×10−5 (open circles) and the fitted curve (solid line) for a transfer function with
only two poles (panel A) and a transfer function with two poles and one zero (panel B)
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constants obtained by non-linear regression and the corresponding χ2 values are in-
dicated in Table 1 for each transfer function. The fit with the first transfer function is
worse than using the second one and, obviously, it gives incorrect time constants. In
addition, this fit with the two poles transfer function must be rejected, since the criti-
cal value χ(145,0.05)

2  is 177 [21]. Consequently, taking into account the actual heat flux
path in the heat power balance equations, i.e. the existence of the zero z1 in the trans-
fer function, it is possible to reproduce successfully the experimental curve. How-
ever, the transfer function with only two poles should be used for carrying out the
dynamic correction of an output obtained from a chemical reaction. Therefore, de-
pending on the heat source location, for determining the transfer function parameters
and for performing a thermogram deconvolution the respective right transfer func-
tion must be used.

A detailed analysis of Eqs (33) and (34), taking into account the relationship be-
tween the time constants (Eq. (26)), allows us to predict the right response curves to
standard power inputs frequently observed in calorimetry:

Table 1 Time constants and χ2 values obtained from the fits with the two types of transfer func-
tions

2 Poles 2 Poles + 1 Zero

τ+(s) 0.0±0.1 3.7±0.1

τ−(s) 6.7±0.2 26±1

τ∗(s) – 16±1

χ2 365 69

Fig. 5 Comparison between predicted responses for the two different transfer functions:
Panel A: power step response (top) and power impulse response (bottom) for a transfer
function with only two poles. The inset represents the finite width pulse response.
Panel B: power step response (top) and power impulse response (bottom) for a transfer
function with two poles and one zero. The inset represents the finite width pulse re-
sponse
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1. The step response to a sample generated thermal effect exhibits an inflexion
point and a null initial slope, whereas the step response to a thermal effect generated
on the cell-sensor set has not such singular point and a non null initial slope (Fig. 5).

2. The impulse response to a sample generated thermal effect consists of the dif-
ference of two decreasing exponential time functions, whereas the impulse response
to a thermal effect generated on the cell-sensor set consists of the sum of two de-
creasing exponential time functions (Fig. 5). In both cases the system is really a sec-
ond-order one. However, the presence of the zero in the transfer function modifies
significantly the microcalorimeter behaviour and, apparently, the system looks like
a first-order one.

The model predicts too that the time constants must be decreasing for increasing
KP values. Table 2 shows the influence of KP on the time constants and the decreas-
ing trend can be clearly seen. Moreover, the time constant associated with the zero is
practically constant, with an approximated value of 16 s. This can be considered as
a test for the model, since this time constant is the thermal relaxation time of the
sample, τS, and it must remain invariable, independent of KP.

In same way, the steady state gain is reduced by feedback compensation and as a
consequence the calibration constant, as earlier defined (Eq. (37)), must increase.
Therefore, the following model prediction has been checked: the calibration con-
stant must exhibit an increasing linear behaviour with regard to KP. Calibration ex-

Table 2 Influence of KP on the time constants

KP=0 KP=5×10−5 KP=10×10−5 KP=20×10−5

τ+(s) 8.1±0.3 5.4±0.1 3.8±0.1 2.5±0.1

τ−(s) 120±1 32.7±0.6 26.4±0.5 22±1

τ∗(s) 16.2±0.6 16.3±0.4 15.8±0.5 16±1

Fig. 6 Influence of KP on the calibration constant KCAL. Panel A: Heat power vs. steady state
value ∆VOUT(+∞) for different KP values. The calibration constants are obtained from
the slope of the linear regressions. () KP=0, (•)KP=5×10−5, (+)KP=10×10−5,
(X)KP=15×10−5, (♦)KP=20×10−5. Panel B: Dependence of calibration constant on KP
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periments were carried out for different KP values. Each calibration experiment con-
sists of the application of successive step power inputs at fixed KP value and the re-
cording of the corresponding steady state values of the signal ∆VOUT(+∞). Figure 6
illustrates a set of linear fits to achieve the calibration constants for different KP val-
ues (Panel A) and the dependency of the calibration constant on such KP values
(Panel B). The predicted linear behaviour is confirmed completely. The corresponding
values of the calibration constant are shown in Table 3. According to Eq. (37), one can
evaluate some instrumental parameters from the linear regression parameters. For exam-
ple, values of 120±3 mV and 400±10 µV K−1 at 298 K are obtained for the single
junction Peltier and Seebeck coefficient (two Bi2Te3 compensation thermopiles with
an electrical resistance of 8.9±0.1 Ω and 66 semiconductor junctions each have been
used). In the literature, values of 120 mV and 400 µV K−1 at 293 K for the thermo-
electric coefficients of such semiconductor material [19] have been reported. This
agreement supports the idea of that there is no appreciable heat leakage in the microcal-
orimeter. In addition, the calibration constant has been evaluated through the neutralisa-
tion reaction of NaOH with HCl [14] and the agreement is complete.

If we consider now the expression for the calibration constant (Eq. (37)) and the
characteristic equation (Eq. (22)), the following result appears:

τ−τ+KCAL = 
CSCSC

αS
 

1

Aε
(38)

where τ−, τ+ and KCAL are functions of KP. However, the left hand of this equation
must remain constant. Values of this term for different KP values are indicated in Ta-
ble 4, and the constancy of this quantity is observed. This is another test for the de-
scribed model.

Table 3 Influence of KP on the calibration constant

105×KP KCAL/µW mV−1

 0 0.0240±0.0003

 5 0.121±0.002

10 0.207±0.002

15 0.295±0.002

20 0.384±0.002

Table 4 Evaluation of the term τ−τ+KCAL for different KP values

105×KP τ−τ+KCAL/s2µW mV−1

 0 23±1

 5 21±1

10 21±1

20 21±2
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Conclusions

A physical model of the microcalorimeter is presented. It is based on basic physi-
cal laws and it is not an empirical or phenomenological model. In view of the excel-
lent fits obtained and the confirmed predictions, it seems that this is a realistic model
for the real system. Likewise, it is a model valid for isothermal titration microcal-
orimeters in general, with and without compensation (KP=0).

According to the model there are two different system transfer functions, depend-
ing on the heat source location. If the source is in the sample (chemical reaction) the
transfer function contains two poles and if the source is on the cell-sensor set (elec-
trical calibration) it has two poles and one zero. Choosing the right transfer function
it is possible to reproduce the experimental data and to obtain a reliable microcal-
orimeter characterisation. Therefore, the adequate transfer function must be used for
the system identification and for the thermogram deconvolution procedures, respec-
tively.

A very simple and fast method for obtaining the transfer function of the micro-
calorimeter has been applied. No data processing in the frequency domain is re-
quired, since it only includes a non-linear fitting of the experimental raw data in the
time domain.

The time constant associated with the zero has a very clear and simple physical
meaning: this is the thermal relaxation time for the sample considered as an isolated
element.

The feedback compensation modifies the system transfer function reducing the
time constant associated with the poles (thermal inertia) and the thermogram peaks
will be narrower and higher. We must keep in mind that the main time constant is a
determining factor for the dynamic sensitivity [22], time resolution and overall time
of an experiment run. All of them are important characteristics for microcalorimetric
studies, specially when a slow kinetic process is involved in the chemical reaction.
Moreover, it has been deduced that the compensation must be done on the cell wall;
if it is done in the sample, the system becomes oscillatory for high KP values.

It has been demonstrated that an accurate dynamic characterisation of the micro-
calorimeter can be achieved by means of a set of electrical calibrations, since the
model establishes that the transfer function poles are the same for both chemical and
electrical experiments. However, an accurate dynamic characterisation cannot be ac-
complished by means of chemical experiments because of the unknown time evolu-
tion of the associated thermal effect.

The model reported here can be generalised to a lumped parameter model with n
elements holding all above mentioned results.
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